Steps for running C-program for AVR microcontroller on Linux

Step:1 Installation of required packages

We will first install all the required packages. This includes

binutils - Tools like the assembler, linker.

gcc-avr - The GNU C cross compiler for AVR microcontrollers.

avr-libc - Package for the AVR C library, containing many utility functions.

uisp — Tool for in system programming of AVR microcontrollers.

avrdude — Utility to program AVR microcontroller. It supports the STK500v2 programmer
flex — Lexical analyser.

bison — Parser generator for C.

byacc — Another enhanced Parser generator for C. Modified version of Bison parser.
codeblocks — Integrated Development Environment(IDE) for writing C-program and
compiling the program to generate the .hex file which can be loaded on microcontroller.

Nk WENE

These packages will be installed through terminal. Open linux terminal.

Figure-1 below shows the command which need to be entered in terminal to install the packages.

sudo apt-get install binutils gcc-avr avr-libc uisp avrdude flex byacc bison codeblocks

Figure-1 Package installation through linux terminal
Note:1.Package installation will require internet connectivity.

2. In majority of ubuntu distribution Terminal can be launched by using shortcut key ctrl+alt+t

Step:2 Creating Project with Codeblocks

Codeblocks is an IDE which is used for writing C-program for AVR and compile it to generate the .hex
file.

Step:2.1

Start of Codeblocks looks similar to one shown in figure-2 shown below. Click on Create a new
project to start.

start here - Code::Blocks 10.05 E = «) 537:55PM Rerts %
= Qad

el T M = | Build target: |

——— @ J Start here |
Projects

 Workspace

Release 10.05 rev 0 (unknown date) gcc 4.6.1 Linux/unicode - 32 bit

E Create a new project !t Open an existing project

w Visit the Code::Blocks forums Report a bug Request a new feature

Recent projects

No recent
o projects
Recent files
Logs &others

J /| Code::Blacks @{ 4, searchresults [£ Build log I # Build messages | & Debugger

CodeCompletion
Projectsimporter

ToDoList
FilesExtensionHandler
Compiler

AStylePlugin
Autosave

Debugger

Welcome to Code::Blocks! [| [default

Figure-2: Codeblocks Welcome screen

Step:2.2

Select AVR Project from Project template category and click Go. lllustrated in figure-3 below.

Code::Blocks IDE =

5:46:09PM R erts 1l

HIEN Q
E = s A O O | Build target: |

Management ®

J Start hevre ®)|

Projects

Work:
Q workspace Code::Blocks"
New from template

Projects Category: | <All categories> o
Build targets
Files \7’;\" @ GLUT Cancel |
Custom bit
User templates ARM Project Dapplication GLUT project «
R
AVR Project Empty project GTK+ project [
& e
Code::Blocks plugin FLTK project Irrlicht project I feature
[F GLEW .~
1 r=9 < Viewas
Large icons
Console application GLFW project Lightfeather project ¢ — g
O List
TIP: Try right-clicking an item
el it 1. Select a wizard type First on the left ®
J '} code:Bloc| 2. Select a specific wizard from the main window (filter by categories if needed)
CodeCompletion 3. Press Go
Proje:
ToDoList
FilesExtensionHandler
Compiler
AStylePlugin
Autosave
Debugger
[[[[[default
Figure-3: Selecting AVR project from project template
Qo
H E oM & i | Build target: |
——— @ J Start here |
AVR Project
4 - Welcome to the new Atmel AVR project wizard!
L This wizard will guide you to create a new Atmel AVR project.
3 When you 're ready to proceed, please click "Next"...
AVR Project ["][skip this page next time|
B2
ect
w feature
Logs &others ®
J /| code::Blocks
CodeCompletion
Projectsimparter
ToDoList —
FilesExtensionHandler <Back || iCEEC Cancel
Compiler
AStylePlugin
Autosave
Debugger
Welcome to Code::Blocks! [| [[default

Figure-4 Welcome Screen

Step:2.3

Enter Project title and project folder name, as illustrated in figure-5. As shown in figure-6, leave
other settings as default. Make sure that compiler selected is GNU AVR GCC compiler. Click on next

button.

B ES = d) 5:4%02PM R erts 1l
LB T Gt b 3 i | Build target: |
J Start here E‘
AVR Project
B > Please select the folder where you want the new project
N to be created as well as its title.
3 Project title:
. First-Experiment
AVR Project | £ ‘
Folder to create project in:
!/hnme/erts/DEsktop/Linux—A\/R—Pmgramming |@ B2b
Project filename:
|FirsExperiment.cbp |
ina fi ect
Resulting filename:
| /home/erts/Desktop/Linux-AVR-Programming/First-Ex
w feature
Logs & others
J /) Code:Blocks
CodeCompletion
Projectsimporter
ToDoList
FilesExtensionHandler | =Back | ‘s‘“’ | cancel |
Compiler
AStylePlugin
Autosave
Debugger
[[[[default
Figure-5: Project name and folder selection window
M & = 1) 54921PM Rerts i}
Qo
O i | Build target: |
J Start here |
AVR Project
4 Please select the compiler to use and which configurations
L youwant enabled in your project.
X Ccompiler:
AVR Project
|Create "Debug” configuration:| | Debug | peo
"Debug" options
outputdir.: |bin/Debug |
Objects output dir.: iubj/DEbug | Ect
[Create "Release” configuration: |Release | b feature

Logs & others

J /) code::Blocks

CodeCompletion
Projectsimporter

ToDoList
FilesExtensionHandler
Compiler

AStylePlugin

Autosave

Debugger

"Release" options

output dir.: i_bﬁ/ﬁl‘ease |

Objects output dir.: |obj/Release |

| <Back J@[Cancel

Welcome to Code::Blocks!

Step2.4

Figure-6: Compiler selection window

[default

In next window select the processor as atmega2560. Select the processor from drop-down list only.

Select the crystal frequency (F_CPU) as 14745600UL. Check Create hex files button and leave other
setting as default, as illustrated in figure-7 below. Click on Finish button.

Code:Blocks IDE

Build target:

J Start here E‘

AVR Project

Please choose a processor for this project...

|atmegazs60 [~]

[T] use external memory

AVR Project

|ox801100 |
B2 bit
[Define F__CPU with the following value:
| 160000000
ect
[create symbol map file (.map)
[create hex files (.hex .eep.hex)
w feature
["] create Motorola S-Record files (.srec .eep.srec)
[_] Create Binary files (.bin .eep.bin)
[create extended listing file (.lss)
Logs & others

J /| Code:Blocks ("] Run avr-size after build

CodeCompletion
Projectsimporter

ToDolList .
FilesExtznsionHandler | <Back | fﬂnlsh | Cancel

Compiler
AStylePlugin
Autosave
Debugger

[[[default

Welcome to Code::Blocks!

Figure-7: Compiler selection window

Step2.5 Text editor will open as shown in figure-8 below. We can start writing the C-program.

main.c [First-Experiment] - Code::Blocks 10.05
- | main(void) : int

¥ @ workspace

2

3

4 #include <avr/io.h»
¥ S First-Experiment 5

6

7

8

v B sources nt mein(vold)

11 while(1)

14 return 0;
ik

Logs & others ®

J /| code::Blocks @{ (4 Search results { & Build log l + Build messages { £ Debugger

CodeCompletion
Projectsimporter

ToDoList
FilesExtensionHandler
Compiler

AStylePlugin

Autosave

Debugger

/erts/Desktop//Lil WR-Progr ing/First-Experiment/main.c \UTF—B |Line1,column1 \Insert | \Read/write \default

Figure-8: CodeBlocks Text editor for writing C program

Code can be compiled by clicking on build button as shown in figure-9 below.

EeBod B Q& - | buzzer_off{void): void =
BE T = i

Man t
i = Jmain‘:]
Projects | Symbols 81 H{
82 unsigned char port_restore = 0;
¥ O workspace 83 port_restore = PINC;
84 port_restore = port_restore | 0x08;
4 First-Experiment 85 PORTC = port_restore;
¥ B Sources gg i
1 main.c :: void buzzer off (void)
90 unsigned char port_restore = ;
El port_restore = PINC;
92 port_restore - port_restore & 0xF7;
93 || PORTC = port_restore;
24 H
95
96 void init dewices (void)
a7
98
99
100
101
102
103 ain Functior
104 int main(void)
105 B¢
106 init_devices();
107 while(1)
108
109 buzzer_on();
110 _delay_ms(1000); de
m buzzer_off();
12 _delay_ms{(1000); del
13 3
14 3
File Line Message
h /erts/Desktop/Lil WR-Progr: ing/First-Experiment/main.c ‘UTF—B |Line 96, Column 25 ‘Insert ‘REad/Write ‘default

Figure-9 Compiling/Building the program

As shown in figure-10, “Build messages” window at the bottom of IDE shows various messages
generated after compilation. Errors if any, will also be shown in this window.
main.c [First-Experiment] - Code::Blocks 10.05

Feaa <
BYE G DG

Q & |} * | buzzer_off(void) : void

@ B S Build target:| Debug :J|

®

& port_restore - PINC,
83 port_restore = port_restore | 0x08;
¥ @ workspace 85 PORTC - port_restore;
86
¥ ™ First-Experiment 87 U

¥ B Sources e void buzzer off (void)
] main.c 90 unsigned char port_restore = 0;
a1 port_restore = PINC;
a2 port_restore = port_restore & 0xF7;
93 PORTC = port_restore;
%4 H
95
9% void init_devices (void)
a7
98 e
99
100 bal inte
101
102
103 ain Functio
104 int main(void)
105 B¢
106 init_devices();
107 while(1) b
08 g
109 buzzer_on()
10 _delay_ms(1000) e
m buzzer_off();
12 _delay_ms(1000); 3
13
14 3
15
116 |
Logs & others ®
[/) Code::Blocks] () search results N £ Build log N + Bulld messages @{ &3 Debugger]
File Line Message
=== First-Experiment, Debug ===
ruserLibsgecravrs... 95 warning: #warning "Compiler optimizatiens disabled; functions from <util/delay.h> won't work as designed”
=== Build finished: O errors, 1 warnings ===
/h /erts/Desktop/Lil WR-Progr: ing/First-Experiment/main.c ‘UTF—B |Linel16, Column 1 Insert ‘REad/Write ‘default

Figure-10 Build message window

Step2.6

After successful compilation of program, .hex file will be generated. This .hex file can be easily
located inside the bin folder which is present in the project folder.

Next step is to load the generated .hex file in microcontroller memory.

Step:3 Loading hex file on microcontroller memory
Step3.1

Download and save the script file (“avrdude_script.sh”) supplied with document on your desktop or
any desired location. This script file has bunch of commands which will help us load the .hex file on
microcontroller. We have to execute this script file with a .hex file as one argument. Below
mentioned steps will describe the process in detail.

Step3.2

In linux we need to set file privileges and permissions for user. A user can read a file, write to file or
execute a file. Script file has to have execute privilege.

Open linux terminal and cd to the folder where script file is saved. This script file can be executed
with root privilege.

Use linux command Is -l to list the folder content in long list format. This format will display
permission for root and other users.

As shown in figure-11, avrdude has only read and write privilege for root user. We have to first set a
execute privilege to script file. This is done by following linux command

Sudo chmod u+x avrdude_script.sh]

[T — X0

erts@regulus: ~/Desktop/Linux-AVR-Programming
erts@regulus:~/Desktop/Linux-AVR-Programmings 1s -1

total 1520

-rwW-rw-r-- erts erts 705 Fe 13:04 avrdude_script.sh
=rwW=rw-r-- erts erts 220795 Fe 17:45 Code-B -1.png
erts erts 4096 Fe 17:57

erts erts 222681 Fe 17:47

erts erts 172029 Fe¢ 17:48 Screenshot from
erts erts 182405 Feb 17:49 Screenshot from
erts erts 193943 Feb 17:49 Screenshot from
erts erts 188434 Feb 3 17:54 Screenshot from
erts erts 159347 Feb 3 17:55 Screenshot from

erts erts 195949 Feb 3 17:57 Screenshot from

erts@regulus:~/Desktop/Linux-AVR-Programming$ sudeo chmod ¥ avrdude_script.sh
[sudo] password for erts:

Sorry, try again. k

[sudo] password for erts:

erts@regulus:~/Desktop/Linux-AVR-Programming$ I

Figure-11 Setting the file permission

File permission has to be set only once on a machine.

Step3.3

In terminal use following command to load the hex file.

./avrdude_script.sh —f <filename.hex>

Note: Filename will be the .hex file which needs to be loaded on the microcontroller. You will have
to give the complete path of file. Easier way of doing this is to keep the terminal and directory
window beside each other and drag the .hex file from directory and drop it into the terminal after
.Javrdude_script.sh —f

Home Folder 1 < 4)) 116:24AM R erts 1%
P
. erts@regulus:-/Desktop/Linux-AVR-Programming$./avrdude_script.sh -f ||

Devices bin Debug

L 107 GBFilesystem

1107 GB Filesystem O

Bookmark:
A First-Experiment.elf FirstExperiment.
w7 elf.eep.hex

li=i smb
Computer Secti
& Home First-Experiment.
elflss

K& Desktop

i} Documents i
& Downloads
& Music

m Pictures
i@ videos

2 windowshare

fusr.

First-Experiment.
elf.map

L File System
& Trash

Network

li=i Browse Network

"First-Experiment.elf.hex" selected (10.8 kB)

Figure-12 Drag and Drop file in terminal

Program will be loaded on microcontroller and terminal will show the status as shown in figure-13
below.

erts@regulus: ~/Desktop/Linux-AVR-Programming
erts@requlus: ~/Desktop/Linux-AVR-Program... ¥ | erts@regulus: ~/Desktop/Linux-AVR-Program...

riment/bin/Debug/First-Experiment.elf.hex"
avrdude: writing flash (3824 bytes):

Writing | #HuSHEEHHEHHEEE T R EE | 100% 2.88s

avrdude: 3824 bytes of flash written

avrdude: verifying flash memory against /home/erts/Desktop/Linux-AVR-Programming
JFirst-Experiment/bin/Debug/First-Experiment.elf.hex:

avrdude: load data flash data from input file fhome/ferts/Desktop/Linux-AVR-Progr
amming/First-Experiment/bin/Debug/First-Experiment.elf.hex:

avrdude: input file /[home/ferts/Desktop/Linux-AVR-Programming/First-Experiment/bi
n/Debug/First-Experiment.elf.hex contains 3824 bytes

avrdude: reading on-chip flash data:

k
Reading | ##SHHHEHHEHHEES G RrRRHH i aEE | 100% 2.78s

avrdude: verifying ...
avrdude: 3824 bytes of flash verified

avrdude: safemode: Fuses 0K

avrdude done. Thank you.

erts@regulus:~/Desktop/Linux-AVR-Programming$ I

References:

1. File Permission in linux. https://help.ubuntu.com/community/FilePermissions

